

May 21 - $\mathbb{F}_{p}\left(x^{p}\right)$ c $\mathbb{F}_{p}(x)$ finte \& nonal

- every ext. of funt heclly is sypasily
\neq finite extiso of Fiolds
Finite fiell $=\mathbb{F}_{p^{n}}$
$K C L$ finite ect. H LUKL Rinite
Reminder: The inlex of a subgp $H \leqslant G$

$$
\text { il } \quad \begin{aligned}
|G: H| & =G / H \\
& =|G l /|H|
\end{aligned}
$$

Recall: $H \leq G$ nomal $\rightleftarrows \forall g \in C$ and $h \in H$ ghg $\in H$
Propesty: $H \Delta C \rightleftarrows C / H$ is a grap w/ paperty C, CGlM ginp hon

Fund THM boF Cindis Themy
Let $K C L$ be a Ceatois field ext.
(1) There is a bijective correspanfence

$$
\begin{array}{l|l}
\mathrm{E} & \longrightarrow \mathrm{Cal}(U E) \\
\mathrm{H} & \mathrm{H}
\end{array}
$$

(2) $|L: E|=$ \#CialluIE $)$ and $|E: K|=|\operatorname{Cal}(U K): \operatorname{Cal}(L U E)|$ In particaner, $|L: K|=\# \operatorname{Cig}(2 / K)$
(3) $K C E$ normal \Longleftrightarrow CallUE) $\doteq G_{a}(U K)$

Rma: Also know KCL Calois \Rightarrow ECL Galois

Example form last time: L spitting of $x^{3}-5 \in Q[x]$

Goal: Giver $K \angle E<L$,
$K \angle E$ normal Gall LE \subseteq callu(k) normal
(\longleftarrow) Assume CeallUE) normal
Let $\alpha \in E$ and $p(x) \in K[x]$ min $p u y$
Need to show: $p(x)$ split/ $/ E$
Let $\beta \in L$ be another not (know $\beta \in L$ bile LIK normal) ie. $p(x)$ spitaL
Meed to show: $\beta \in E$
Because $E=L^{G_{a}(L U E)}$ it selfies show for all ' t hall UE) that $\tau(\beta)=\beta$.

Also know blk α, β roots of p $\exists \sigma \in h_{a}(L / k)$ sit $\sigma \alpha=\beta$ Cealluel normal -

$$
\tau^{\prime}=\sigma^{-1} \tau \sigma \in \operatorname{Cal}(L / E)
$$

i.e. $\sigma \tau^{\prime}=\tau \sigma$

Apply $\alpha \in E$

$$
\begin{aligned}
& \tau \sigma(\alpha)=\tau(\beta) \\
& \sigma^{\prime}(\alpha)=\sigma(\alpha)=\beta
\end{aligned}
$$

$\Rightarrow \forall \tau \in \operatorname{GalME} E \tau(p)=\beta$
$\Rightarrow \beta \in L^{\text {Cal (UE) }}=E$
$\Rightarrow \beta \in E$

Goal: Civen KCECL, KCE nomal Gallue) \subseteq calCUK nomal
\Longrightarrow Assume KCE nomal We will constanct a suĵective grous hou
$\psi: \operatorname{Cal}(L / K)+\operatorname{Cal}(E / K)$ such that $\operatorname{Ker}(\eta)=$ Gal(LIE $)$ In paricake, this shows

- Larluel nomal
- CallL/k)/Callue \cong Calle

Let $\sigma \in G_{a}(L / K)$
Claim: $\sigma(E) \subseteq E$
i.e $\forall \alpha \in E \quad \sigma \in \in \in E$

Pfot dain: Let $\alpha \in E$
Let $p(x) \in K[x]$ be min $p l y$
Know $p(x)$ splial / E.
Sinue obl is a nost of p
$\rightarrow \sigma(b) \in$
Thectre, we cal restint $\sigma+E$
$\sim \sigma)_{E}: \underset{\alpha \longmapsto \sigma(\alpha)}{E}$ auto $/ K$

1) Detve $\psi(\sigma)=\left.\sigma\right|_{E}$
clearly,

$$
\operatorname{ker}^{\text {early }}(\psi)=\operatorname{Gal}_{\text {al }}(L I E)
$$

